Porphyromonas gingivalis infection increases osteoclastic bone resorption and osteoblastic bone formation in a periodontitis mouse model

نویسندگان

  • Wenjian Zhang
  • Jun Ju
  • Todd Rigney
  • Gena Tribble
چکیده

BACKGROUND Porphyromonas gingivalis has been shown to invade osteoblasts and inhibit their differentiation and mineralization in vitro. However, it is unclear if P. gingivalis can invade osteoblasts in vivo and how this would affect alveolar osteoblast/osteoclast dynamics. This study aims to answer these questions using a periodontitis mouse model under repetitive P. gingivalis inoculations. METHODS For 3-month-old BALB/cByJ female mice, 10(9) CFU of P. gingivalis were inoculated onto the gingival margin of maxillary molars 4 times at 2-day intervals. After 2 weeks, another 4 inoculations at 2-day intervals were applied. Calcein was injected 7 and 2 days before sacrificing animals to label the newly formed bone. Four weeks after final inoculation, mice were sacrificed and maxilla collected. Immunohistochemistry, micro-CT, and bone histomorphometry were performed on the specimens. Sham infection with only vehicle was the control. RESULTS P. gingivalis was found to invade gingival epithelia, periodontal ligament fibroblasts, and alveolar osteoblasts. Micro-CT showed alveolar bone resorption and significant reduction of bone mineral density and content in the infected mice compared to the controls. Bone histomorphometry showed a decrease in osteoblasts, an increase in osteoclasts and bone resorption, and a surprisingly increased osteoblastic bone formation in the infected mice compared to the controls. CONCLUSIONS P. gingivalis invades alveolar osteoblasts in the periodontitis mouse model and cause alveolar bone loss. Although P. gingivalis appears to suppress osteoblast pool and enhance osteoclastic bone resorption, the bone formation capacity is temporarily elevated in the infected mice, possibly via some anti-microbial compensational mechanisms.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Inhibition of osteoblastic cell differentiation by lipopolysaccharide extract from Porphyromonas gingivalis.

Lipopolysaccharide from Porphyromonas gingivalis (P-LPS), an important pathogenic bacterium, is closely associated with inflammatory destruction of periodontal tissues. P-LPS induces the release of cytokines and local factors from inflammatory cells, stimulates osteoclastic-cell differentiation, and causes alveolar bone resorption. However, the effect of P-LPS on osteoblastic-cell differentiati...

متن کامل

Ameliorating effects of Juzentaihoto on restraint stress and P. gingivalis-induced alveolar bone loss.

OBJECTIVE Juzentaihoto (JTX) is a traditional Japanese medicine that consists of 10 herbs. The purpose of this study was to evaluate the efficacy of multi-herbal medicine JTX as a preventive and therapeutic drug for periodontal bone resorption and for reducing restraint stress. MATERIALS AND METHODS Porphyromonas gingivalis ATCC 33277 was used for testing the antibacterial activity of JTX and...

متن کامل

A Modified Glycosaminoglycan, GM-0111, Inhibits Molecular Signaling Involved in Periodontitis

BACKGROUND Periodontitis is characterized by microbial infection, inflammation, tissue breakdown, and accelerated loss of alveolar bone matrix. Treatment targeting these multiple stages of the disease provides ways to treat or prevent periodontitis. Certain glycosaminoglycans (GAGs) block multiple inflammatory mediators as well as suppress bacterial growth, suggesting that these GAGs may be exp...

متن کامل

Effect of anti-CD14 antibody on experimental periodontitis induced by Porphyromonas gingivalis lipopolysaccharide.

The lipopolysaccharide (LPS) released by Porphyromonas gingivalis, a Gram-negative bacterium found in the periodontal pockets of patients with periodontitis, induces bone resorbing activity in vivo. We previously showed that a receptor for LPS on human gingival fibroblasts and gingival epithelial cells is CD14. In this study, we established a mouse model of experimental periodontitis by applyin...

متن کامل

Anti-inflammatory Effects of PMX205 in Mouse Macrophage Periodontitis Model

Background: C5areceptor antagonistPMX205 is a synthetic hexapeptidecapable of blocking C5a-C5a receptor (C5aR) axis by simulating C5a active C-terminal amino acid residues. This hexapeptide presents good anti-inflammatory effects in a myriad inflammation models. The anti-inflammatory effect of PMX205 on periodontitis is yet to be fully fathomed. Objective: To examine the anti-inflammatory effec...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 14  شماره 

صفحات  -

تاریخ انتشار 2014